Definition: An exception is an event, which occurs during the execution of a program, that disrupts the normal flow of the program's instructions
When an error occurs within a method, the method creates an object and hands it off to the runtime system. The object, called an exception object, contains information about the error, including its type and the state of the program when the error occurred. Creating an exception object and handing it to the runtime system is called throwing an exception.
After a method throws an exception, the runtime system attempts to find something to handle it. The set of possible "somethings" to handle the exception is the ordered list of methods that had been called to get to the method where the error occurred. The list of methods is known as the call stack .
The runtime system searches the call stack for a method that contains a block of code that can handle the exception. This block of code is called an exception handler. The search begins with the method in which the error occurred and proceeds through the call stack in the reverse order in which the methods were called. When an appropriate handler is found, the runtime system passes the exception to the handler. An exception handler is considered appropriate if the type of the exception object thrown matches the type that can be handled by the handler.
The runtime system searches the call stack for a method that contains a block of code that can handle the exception. This block of code is called an exception handler. The search begins with the method in which the error occurred and proceeds through the call stack in the reverse order in which the methods were called. When an appropriate handler is found, the runtime system passes the exception to the handler. An exception handler is considered appropriate if the type of the exception object thrown matches the type that can be handled by the handler.
The Three Kinds of Exceptions
The first kind of exception is the checked exception. These are exceptional conditions that a well-written application should anticipate and recover from.
User supplies the name of a nonexistent file, and the constructor throws java.io.FileNotFoundException. A well-written program will catch this exception and notify the user of the mistake, possibly prompting for a corrected file name.
Checked exceptions are subject to the Catch or Specify Requirement
The second kind of exception is the error. These are exceptional conditions that are external to the application, and that the application usually cannot anticipate or recover from.
For example, suppose that an application successfully opens a file for input, but is unable to read the file because of a hardware or system malfunction. The unsuccessful read will throw java.io.IOError. An application might choose to catch this exception, in order to notify the user of the problem — but it also might make sense for the program to print a stack trace and exit.
Errors are not subject to the Catch or Specify Requirement. Errors are those exceptions indicated by Error and its subclasses.
The third kind of exception is the runtime exception. These are exceptional conditions that are internal to the application, and that the application usually cannot anticipate or recover from. These usually indicate programming bugs, such as logic errors or improper use of an API. For example, consider the application described previously that passes a file name to the constructor for FileReader. If a logic error causes a null to be passed to the constructor, the constructor will throw NullPointerException. The application can catch this exception, but it probably makes more sense to eliminate the bug that caused the exception to occur.
Runtime exceptions are not subject to the Catch or Specify Requirement. Runtime exceptions are those indicated by RuntimeException and its subclasses.
Errors and runtime exceptions are collectively known as unchecked exceptions.
Advantage 1: Separating Error-Handling Code from "Regular" Code
Advantage 2: Propagating Errors Up the Call Stack
Advantage 3: Grouping and Differentiating Error Types
Now..The Exception Controversy
Because the Java programming language does not require methods to catch or to specify unchecked exceptions (RuntimeException, Error, and their subclasses), programmers may be tempted to write code that throws only unchecked exceptions or to make all their exception subclasses inherit from RuntimeException. Both of these shortcuts allow programmers to write code without bothering with compiler errors and without bothering to specify or to catch any exceptions. Although this may seem convenient to the programmer, it sidesteps the intent of the catch or specify requirement and can cause problems for others using your classes.
Why did the designers decide to force a method to specify all uncaught checked exceptions that can be thrown within its scope? Any Exception that can be thrown by a method is part of the method's public programming interface. Those who call a method must know about the exceptions that a method can throw so that they can decide what to do about them. These exceptions are as much a part of that method's programming interface as its parameters and return value.
The next question might be: "If it's so good to document a method's API, including the exceptions it can throw, why not specify runtime exceptions too?" Runtime exceptions represent problems that are the result of a programming problem, and as such, the API client code cannot reasonably be expected to recover from them or to handle them in any way. Such problems include arithmetic exceptions, such as dividing by zero; pointer exceptions, such as trying to access an object through a null reference; and indexing exceptions, such as attempting to access an array element through an index that is too large or too small.
Runtime exceptions can occur anywhere in a program, and in a typical one they can be very numerous. Having to add runtime exceptions in every method declaration would reduce a program's clarity. Thus, the compiler does not require that you catch or specify runtime exceptions (although you can).
One case where it is common practice to throw a RuntimeException is when the user calls a method incorrectly. For example, a method can check if one of its arguments is incorrectly null. If an argument is null, the method might throw a NullPointerException, which is an unchecked exception.
Generally speaking, do not throw a RuntimeException or create a subclass of RuntimeException simply because you don't want to be bothered with specifying the exceptions your methods can throw.
Here's the bottom line guideline: If a client can reasonably be expected to recover from an exception, make it a checked exception. If a client cannot do anything to recover from the exception, make it an unchecked exception.
Howzzaaaaat!!!
No comments:
Post a Comment